When designing a Chebyshev filter, it is important to note that the input and output impedances can only be equal for odd numbers of poles. In the table below, for example, this means that N must be 1, 3, 5, 7 or 9. The number of poles corresponds to the sum total number of inductors and capacitors.

Note also that for an odd pole filter, an ** even** number of values is given. The rightmost value (which will be 1.0000) simply indicates that the load impedance is the same as the source impedance.

For even pole filters, to maintain the correct Chebyshev shape response, the load impedance must be different to the source impedance. Hence the value "1.9841" which is for the final load impedance.

N | g1 | g2 | g3 | g4 | g5 | g6 | g7 | g8 | g9 | g10 | g11 |
---|---|---|---|---|---|---|---|---|---|---|---|

01 | 0.6986 | 1.0000 | |||||||||

02 | 1.4029 | 0.7071 | 1.9841 | ||||||||

03 | 1.5963 | 1.0967 | 1.5963 | 1.0000 | |||||||

04 | 1.6703 | 1.1926 | 2.3661 | 0.8419 | 1.9841 | ||||||

05 | 1.7058 | 1.2296 | 2.5408 | 1.2296 | 1.7058 | 1.0000 | |||||

06 | 1.7254 | 1.2479 | 2.6064 | 1.3137 | 2.4758 | 0.8696 | 1.9841 | ||||

07 | 1.7372 | 1.2583 | 2.6381 | 1.3444 | 2.6381 | 1.2583 | 1.7372 | 1.0000 | |||

08 | 1.7451 | 1.2647 | 2.6564 | 1.3590 | 2.6964 | 1.3389 | 2.5093 | 0.8796 | 1.9841 | ||

09 | 1.7504 | 1.2690 | 2.6678 | 1.3673 | 2.7939 | 1.3673 | 2.6678 | 1.2690 | 1.7504 | 1.0000 | |

10 | 1.7543 | 1.2721 | 2.6754 | 1.3725 | 2.7392 | 1.3806 | 2.7231 | 1.3485 | 2.5239 | 0.8842 | 1.9841 |